
RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

!
Designing Side-chaining PlugIns with RackAFX!
Will Pirkle!!
The ability to design and port side-chaining plugins is new in RackAFX v6.6.1. This document explains
how to enable and use side-chaining in your projects, either old pre-v6.6.1 or new projects. RackAFX will
also port the side-chaining capability to VST3 and AU projects using the <Make VST> and <Make AU>
features. And, the side-chaining is also implemented in the RAFX-DLL-as-Native-VST paradigm. !!
The RackAFX Aux Input Bus!
In order to implement side-chaining, I added a second audio input bus to the plugin object, known as an
Aux Input Bus. This is the same way the VST3 and AU APIs implement side-chaining. The side-chaining
Aux Input Bus is indexed with the number 1. Aux Input 0 is reserved (it is the main input bus in RackAFX)
and in the future I may add more input busses as needed. RackAFX will call a new function named
processAuxInputBus() prior to calling processAudioFrame() or processRackAFXAudioBuffer() or
processVSTAudioBuffer() depending on which process method you prefer — most will be using
processAudioFrame(). !!
• RackAFX will call this new function once for each aux input bus !
• you will grab pointers to the aux input buffers in processAuxInputBuffer() !
• you will use the pointers in your process…() function to apply the side-chain to your plugin!
• currently side-chaining is only available for FX plugins, and only using the WAV file input source !!
In order to implement side-chaining, you need to do a couple of things:!!
1. for older projects, you need to add processAuxInputBus() to your .h and .cpp files — for new projects,

the function is already there for you to populate with your code!!
2. you will need to declare pointers to the aux input bus buffer and the type of pointer you declare

depends on which process() function you are using in RackAFX!!!
Step 1: Declare your Aux Input buffer pointers!
The type of pointer you need to declare depends on which process…() method you are using. !!
processAudioFrame()!
In this function, your FX audio input is a frame of data (one sample-period’s worth) and arrives via a
floating point buffer, pInputBuffer and you pick up either one or two samples from it (mono or stereo) by
accessing pInputBuffer[0] and pInputBuffer[1] respectively. You declare your Aux Input buffer pointers the
same way as pInputBuffer is declared, for example:!!
float* m_pSidechainFrameBuffer;!!
You then acquire the side-chain samples the same way as the audio input, by accessing
m_pSidechainFrameBuffer[0] and m_pSidechainFrameBuffer[1] in your processAudioFrame function. !!!
processRackAFXAudioBuffer()!
In this function, your FX audio input is a complete audio buffer delivered as-is from RackAFX and arrives
via a floating point buffer, pInputBuffer. For stereo inputs, the samples are interleaved L/R/L/R and it is up
to you to de-interleave the samples for stereo inputs. You declare your Aux Input buffer pointers the same
way as pInputBuffer is declared, for example:!

!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

!
float* m_pSidechainRAFXBuffer;!!
You then acquire the side-chain samples the same way as the audio input, de-interleaving the samples
for stereo side-chain inputs.!!!
processVSTAudioBuffer()!
In this function, your FX audio input consists of a float double-pointer ppInputs — a pointer to a buffer of
pointers. Each of the sub-pointers is a buffer for one channel. For stereo inputs, the first pointer is the left
channel and the second pointer is the right channel. In this case, RackAFX (or your VST/AU host) de-
interleaves the samples for you and places each in its own buffer. You declare your Aux Input buffer
pointers the same way as ppInputs is declared, for example:!!
float** m_ppSidechainVSTBuffer;!!
You then acquire the side-chain samples the same way as the audio input, each channel arrives in its
own buffer. !!!
More helper variables!
You also need to declare a couple of extra helper variables so your plugin knows the channel count of the
side-chain input and whether the bus is enabled or not. Add these variables to your plugin’s .h file along
with the buffer pointers above:!!
bool m_bSidechainEnabled;!
UINT m_uSidechainChannelCount;!!
So, that’s it - you need three extra variables in your .h file so go ahead and initialize them in your
constructor:!!
• set the side-chain pointer to NULL!
• set the side-chain channel count to 0!
• disable the sods-chain flag!!
For the accompanying plugin example, I show how to use all three types, so my constructor looks like
this:!!
CVolumeWithSidechain::CVolumeWithSidechain()!
{!
! <SNIP SNIP SNIP>!!
! // Finish initializations here! !
! m_pSidechainFrameBuffer = NULL;!
! m_pSidechainRAFXBuffer = NULL;!
! m_ppSidechainVSTBuffer = NULL;!!
! m_bSidechainEnabled = false;!
! m_uSidechainChannelCount = 0;!
}!!!!
!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

Step 2: Understanding/Implementing the processAuxInputBus() method!
For older projects, you need to add the function prototype to your .h file and implement it in your .cpp file.
The prototype is:!!
// --- process aux inputs !
virtual bool __stdcall processAuxInputBus(audioProcessData* pAudioProcessData);!!
The function’s input variable is a pointer to an audioProcessData structure. This structure is defined in
pluginconstants.h.!!
typedef struct!
{!
! // --- bus index!
! UINT uInputBus; // sidechain input = 1; others may follow!!
! // --- pointers for the three process types!
! float* pFrameInputBuffer;!
! float* pRAFXInputBuffer;!
! float** ppVSTInputBuffer;!
! UINT uNumInputChannels; // number of input channels, 1 or 2!
! UINT uBufferSize; // RAFX buffer only, generally you won't need this!!
! bool bInputEnabled;!!
}audioProcessData;!!
The structure’s member variables are easy to decode and all but two of them will map to the variables you
just declared in the .h file. When you implement the processAuxInputBus() function you will need to:!!
• check the input bus index value - we only respond to Bus 1 for side-chain input!
• pick up and store the particular pointer you need, for example if you use processAudioFrame() you

would need to pick up the pFrameInputBuffer ; the others are easy to decode!
• store the channel count!
• store the input-enabled flag!
• the uBufferSize variable is for processRackAFXAudioBuffer() users - however, it is guaranteed to be

identical to the buffer size of the input/output buffers for this function!
• if the side-chain is disabled, the buffer pointers will be NULL and the input channel count will be

0 so it is always important to check them!!!
My example plugin looks like this:!!
// --- process aux inputs (currently sidechain only)!
bool __stdcall CVolumeWithSidechain::processAuxInputBus(audioProcessData* !
! ! ! ! ! ! ! ! pAudioProcessData)!
{!
! // --- store sidechain buffer pointers for use in process() methods!
! //!
! // Input Bus 1 = Sidechain!
! //!
! if(pAudioProcessData->uInputBus == 1)!
! {!
! ! // --- save various pointers, in practice you only save the !
! ! // pointer you need for your particular process() function!

!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

! ! m_pSidechainFrameBuffer = pAudioProcessData->pFrameInputBuffer;!
! ! m_pSidechainRAFXBuffer = pAudioProcessData->pRAFXInputBuffer;!
! ! m_ppSidechainVSTBuffer = pAudioProcessData->ppVSTInputBuffer;!!
! ! // --- sidechain input activation/channels!
! ! m_bSidechainEnabled = pAudioProcessData->bInputEnabled;!
! ! m_uSidechainChannelCount = pAudioProcessData->uNumInputChannels;!
! }!!
! return true;!
}!!!
Step 3: Use the pointers in your process…() method!
Lastly, you need to use the pointers and that will depend on the type of process() method you are using. !!
processAudioFrame()!
You acquire the side-chain samples the same way as the audio input, by accessing
m_pSidechainFrameBuffer[0] and m_pSidechainFrameBuffer[1] in your processAudioFrame function, for
example:!!
! float fSideChainLeft = 0;!
! float fSideChainRight = 0;!!
! // do we have an active side-chain and valid buffer?!
! if(m_bSidechainEnabled && m_pSidechainFrameBuffer)!
! {! !
! ! // left sample!
! ! fSideChainLeft = m_pSidechainFrameBuffer[0];!
! ! !
! ! // right sample!
! ! if(m_uSidechainChannelCount == 2)!
! ! ! fSideChainRight = m_pSidechainFrameBuffer[1];!!
! ! // use the side-chain…!
! }!
! !!
processRackAFXAudioBuffer()!
You acquire the side-chain samples the same way as the audio input, de-interleaving the samples for
stereo side-chain inputs, if your plugin requires it. In this snippet, you can see how to de-interleave the
buffer for a stereo side-chain:!!
! float fSideChainLeft = 0;!
! float fSideChainRight = 0;!!
! // do we have an active side-chain and valid buffer?!
! if(m_bSidechainEnabled && m_pSidechainRAFXBuffer)!
! {! !
! ! // left sample!
! ! if(i%2 == 0)!
! ! {!
! ! ! fSideChainLeft = m_pSidechainRAFXBuffer[i];!

!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

! ! }!
! ! else!
! ! ! fSideChainRight = m_pSidechainRAFXBuffer[i];!
! ! !
! ! // use the side-chain…!
! }!!!
processVSTAudioBuffer()!
You acquire the side-chain samples the same way as the audio input, each channel arrives in its own
buffer and you are delivered the double-pointer like the input and outputs. !!
! // --- sidechain pointers!
! float* inSidechain1 = NULL;!
! float* inSidechain2 = NULL;!
! !
! // --- sidechain samples!
! float fLeftSidechainSample = 0 ;!
! float fRightSidechainSample = 0 ;!!
! // --- grab the buffer pointers!
! if(m_bSidechainEnabled && m_ppSidechainVSTBuffer)!
! {!
! ! inSidechain1 = m_ppSidechainVSTBuffer[0];!
! ! if(m_uSidechainChannelCount == 2)!
! ! ! inSidechain2 = m_ppSidechainVSTBuffer[1];!
! }!!
! // then use them in the processing loop!
! while (--inFramesToProcess >= 0)!
! {!
! ! if(m_bSidechainEnabled && m_ppSidechainVSTBuffer)!
! ! {!
! ! ! // --- get left side-chain sample!
! ! ! fLeftSidechainSample = *inSidechain1++;!!
! ! ! // --- get left side-chain sample!
! ! ! if(m_uSidechainChannelCount == 2)!
! ! ! ! fRightSidechainSample = *inSidechain2++;!!
! ! ! // use the side-chain…!
! ! }!!
! etc…!!!
Step 4: Optional: add side-chaining to your VST and AU Ports!
You don’t need to add any additional code in your Make VST and Make AU ports. However, you do need
to enable the aux input and this is done with File->Edit Project in RackAFX - just check the box to enable
the side-chain in the ports:!!!!
!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

!

For VST3 ports, you will see either a side-chain button on the GUI toolbar (Cubase) or you will see
additional audio input channels (Reaper), or you will see the side-chain input show up in the track routing
box (Ableton Live). For AU ports, you will see either a side-chain drop-down list on the GUI toolbar (Logic)
or you will see the side-chain input show up in the track routing box (Ableton Live).!!
NOTE: side-chaining is not available in the VST2 version of the Make VST projects; this is because the
built-in Stienberg VST3-to-VST2 wrapper does not support side-chaining! !!!
Using the Side-Chain Input in RackAFX!
Using the side-chain input is really easy in RackAFX. Open the Sidechain Input dialog with either !
View->Sidechain Control or with the toolbar button that looks like chain-links:!

!
In the dialog box (which is mode-less and floats), you choose your WAV file to use as the side-chain input
and the playback options (one-shot or loop). You also enable and disable the side-chain bus from this
panel. Finally, the monitor button lets you route the side-chain bus to the output bus (without any
processing) so you can hear the side-chain if needed. The level control can be used to tweak the volume
of the side-chain. !

!
!

RackAFX Addendum 1! Designing Side-chaining PlugIns with RackAFX
! Copyright © 2015 Will Pirkle

!!
You can turn the side-chain on and off, and you can also change the playback mode!
during plugin operation with audio streaming! !!
The VolumeWithSidechain Sample Project!
I made a really simple demo plugin to show you how to use the side-chain input regardless of which
process…() method you choose to use. This project is a volume-in-dB plugin with a side-chain input.
When you activate the side-chain, the operation changes and the side-chain signal is routed to the
outputs, without any volume control. This was the easiest way for me to demo how to pick up the left and
right side-chain samples. You can comment and un-comment the last view lines of the constructor to
change the process…() functions. The code for picking up the side-chain samples is purposefully
verbose to show exactly how to get at those input samples.!!

!
!

